# Forecasting blue carbon in tidal marshes: The balance between carbon sequestration and methane emissions

Morris, J.T., Belle Baruch Institute for Marine & Coastal Sciences, University of South Carolina, Columbia, SC 29208

Megonigal , J.P. Smithsonian Environmental Research Center, Edgewater, MD 21037

## Climate Benefits of Sequestration Offset by Methane



Hoffenberger, Needelman & Megonigal, 2010

# Marsh organs like they can only do at SERC



Typical Results: Note that there may be a threshold depth below which CH4 production occurs – related to dewatering?





- CH4 production was greater at depth (e.g. 35 cm > 5 cm).
- CH4 production was greater in organ rows that were lower in elevation (e.g. -10 cm elevation > 35 cm elevation).

The results suggest there is a threshold inundation frequency across which methanogenesis is either "on" or "off".



#### **Features of Methane Emissions Submodel**

1. Leverages existing parameters of MEM, adding just one new parameter.

2. Methanogenesis occurs only when depth is less that D\* (40% inundation time).

3. Methanogenesis is a constant fraction (4%) of root litter (i.e. labile carbon) decay. This fraction is the  $CH_4$  yield coefficient.

4. The CH<sub>4</sub> yield coefficient incorporates many processes including competition for TEAs and CH<sub>4</sub> oxidation.

5. Yield coefficient was adjusted so that modeled emissions at one sea level matched observed.

6. This gives an integrated rate of 26.4 g C m<sup>-2</sup> yr<sup>-1</sup>.

We modeled the root distribution as an exponential distribution. The total decay was proportional to root turnover and a specific decay rate. This is the resulting decay rate when the RS ratio is 4, the turnover is 1/yr, the decay rate of -0.3/yr, and the 95% rooting depth is 20 cm.



Two alternative models of methanogenesis – takes into account the saturation of sediment. It depends on relative elevation, depth, and tidal amplitude.

#### **Threshold Model**

 Methanogensis occurs only when depth is less that D\* This gives an integrated rate of 26 g C m<sup>-2</sup> yr<sup>-1</sup>.

#### **Proportionality Model**

2. Methanogensis occurs only during the time that a given depth is saturated (i.e. in proportion to inundation time).



#### Predicted Century-Level Methane Production

MEM was run for different combinations of TSS and tidal amplitude for two sea-level rise scenarios.

The equilibrium  $CH_4$  production at constant SLR = 0.5 mm/yr (grey surface) and following 100 yr of accelerating sea level to 1 m (color surface).



#### Why is CH<sub>4</sub> production sensitive to tidal amplitude?

The equilibrium, normalized marsh elevation (left) and inundation time (right) at constant SLR =0.5 mm/yr (grey surface) and following 100 yr of accelerating sea level to 1 m (color surface).



Normalized elevation = (marsh elevation – MSL)/(MHW-MSL)

Equilibrium rates of C sequestration and  $CH_4$  emissions at constant SLR =0.5 mm/yr (grey surface) and following 100 yr of accelerating sea level to 1 m (color surface).

Century Level C Sequestration Rate Century Level CH<sub>4</sub> Emissions (CO<sub>2</sub> Equivalent)



# Conclusions

- 1. Methane emissions are far more important in microtidal than in macrotidal estuaries.
- 2. C-sequestration is more important in macrotidal than in microtidal estuaries and will increase with an acceleration in SLR, at least over the next century.
- 3. Methane emissions will surpass C-sequestration in microtidal estuaries with accelerating SLR over the next century, resulting in positive feedback.

# Caveats

- 1. The refractory fraction of organic production is invariant
- 2. The RS ratio and root turnover rate are invariant
- 3. CH<sub>4</sub> yield was invariant and calibrated for a single brackish marsh.
- 4. Salinity is constant

# Acknowledgements

We thank

Adam Langley Tom Mozdzer and Karen Sundberg for their invaluable assistance

and



The only agency that will pay you to watch grass grow

ols Window Help 3 🗉 : Too 🛓 🖪 🗟 🚎 🖙 🖙 🐨 Toi : 🗆 / 🎾 🔿 ¬ 🔲 🖬 🗗 🗗 : 🕼 🗓 : To 🧐 🌒 🗞

A 3-D scan of North Inlet







Selection: .../PlaneEx

Row: 3672, Col: 10011 352.10° -39.009° d: 3374mm XYZ: 2261mm -1109mm 36790mm RF: 1092



View: 182° -11° w: 42°



Row: 3463, Col: 3088

RGB: 50 36 32



Measurement: Click to start the measure line, double click to finish measurement.

View: 228° -20° w: 33°

Pos: 36.84 22.01 60.92

Loading Done Detail: 100% Subsample: 1

Pts: 44M